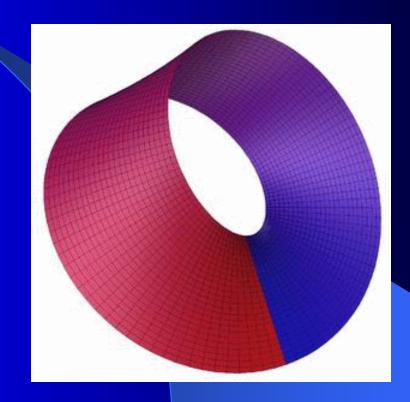
奇异曲面高斯通量的讨论

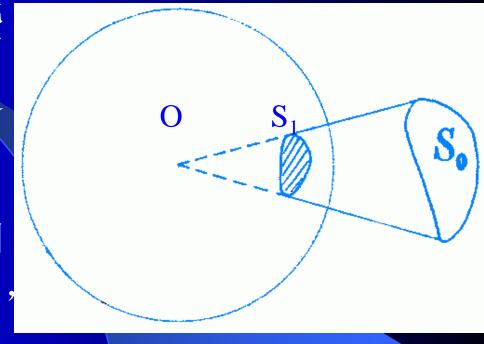
物理一班 野仕伟



1.非封闭曲面的通量计算—投影法

平方反比场E=A r/r^3 有一特殊性质,即对两面元d S_1 ,d S_2 ,若对场源O张有相同立体角d Ω ,则d S_1 ,d S_2 的通量相等。

从而,任意曲面 S_0 ,对O张 Ω 的立体角,投影到以场源为球心的单位球面成为 S_1 ,则



 $\Phi_{S0} = \Phi_{S1} = \Omega A$

此即非封闭双侧曲面的通量计算式。

对静电场, $A=q/4\pi\epsilon(q为场源电荷)$,从而

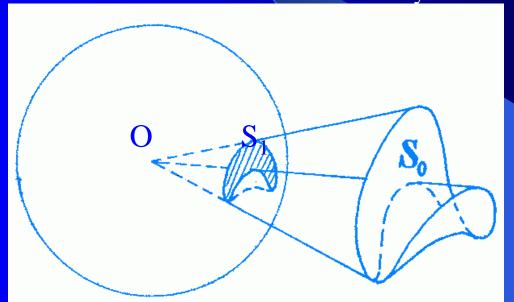
 $\Phi_{(q)S0} = \Omega q / 4\pi \epsilon$.

下面定义一种新的通量计算方法:

力场E=A r/r³ 场源为O,

取 S_0 上一点P,当射线OP穿过 S_0 奇数次时,p的投影点p为有效区,记入 S_1 ;当OP射线穿过 S_0 偶数次时,p'为无效点,不记入 S_1 。

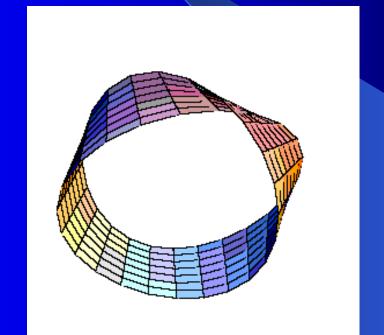
由于通量只是一个数值,在单位球面上面积 $S_1=\Omega$,球面上各处F大小都相等,则通量 $\varphi_v=S_1$ A.



2.非封闭单侧曲面(Mobius单侧面) 的高斯通量

按法向量定义的通量dΦ=n•S, 首先要求连续曲面上各点有唯一确定的连续法向量。

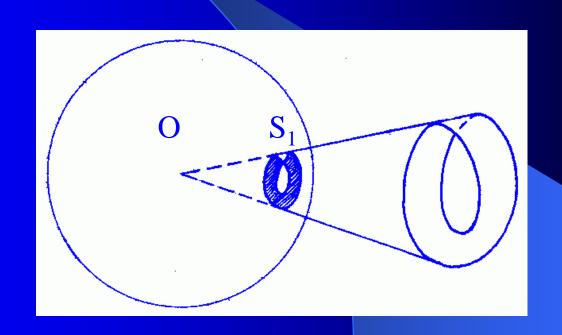
而单侧曲面不满足此条件,如Mobius面。故不能由法向量定义其通量。



但用投影的方法,可将Mobius面唯一地映射在单位球面域 S_1 上,通量 $\Phi_y = AS_1$.

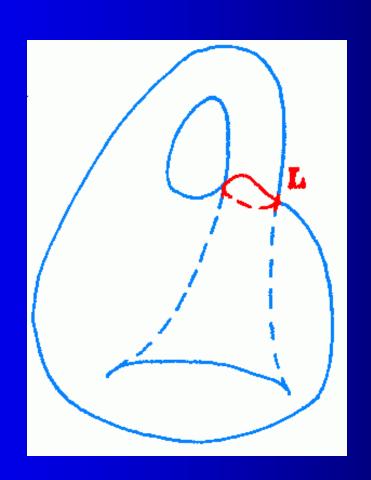
可以看出,投影法对单,双侧曲面都适用,故可作为通量的定义。

下面将证明,此定义对克莱因瓶也适用,并可求出唯一的通量。



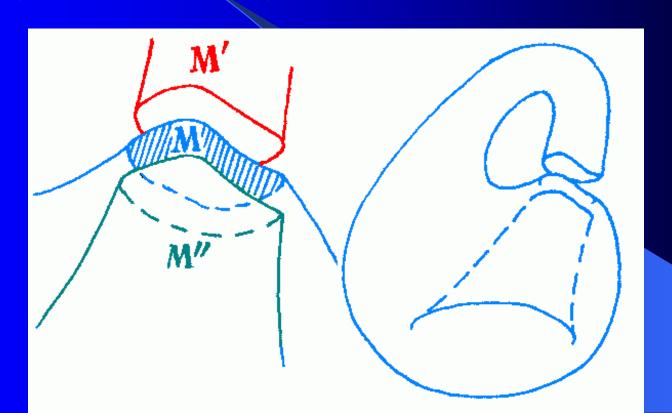
3. Klein瓶的高斯通量

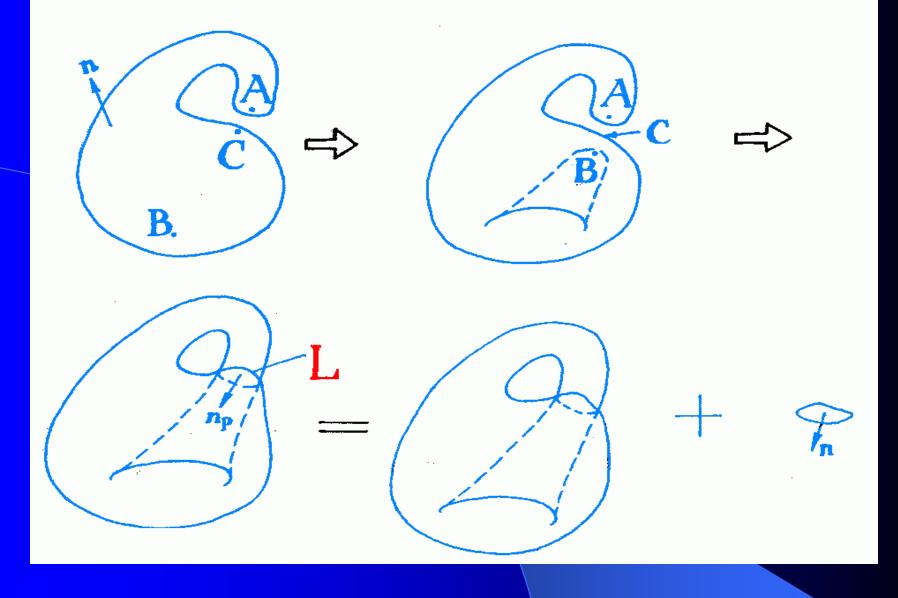
- 克莱因瓶为一单侧曲面,其上有一曲线L,L为三面交汇处。
- 现考虑其对平方反比场源O的通量。



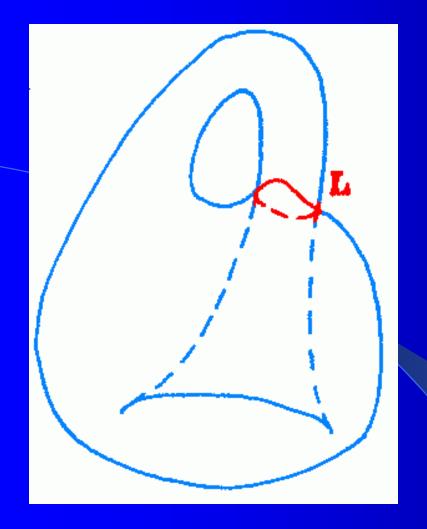
以L为边界,作一曲面M,将M平移一小段距离dx,变为M′,再反向平移dx,变为M′。

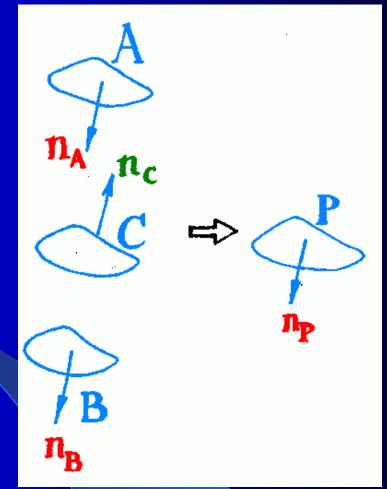
让原三面分别只与M, M, M, 之一相连,则得一新曲面,为一封闭曲面。其通量为0或4πA(由O位置决定)。



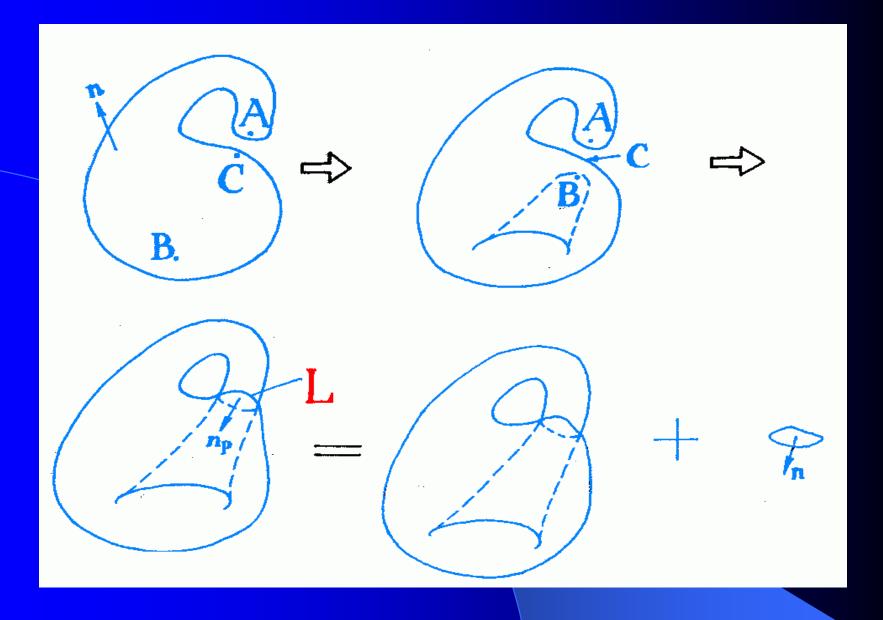


逆向想象,如图。法向量向外。 注意,通量一直连续变化。

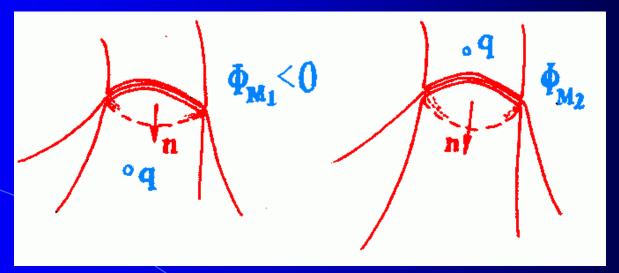




被捏合的部分法向量为原先三部分法向量的和。P处方向与A,B同,与C相反。



4的通量应为3的通量减去5的通量。



有一个问题:以L为边的曲面有无限个,那末上述方法未必得出唯一结果。做一分析:

 M_1 使q在外, M_2 使q在内,有下列各式

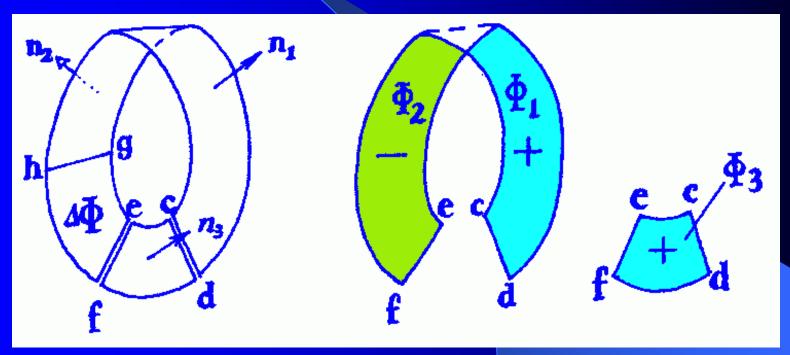
 Φ_{M2} =4 π A+ Φ_{M1} Φ_{P1} =0; Φ_{P2} =4 π A; Φ_{1} = Φ_{P1} - Φ_{M1} = Φ_{M1} ; Φ_{2} = Φ_{P2} - Φ_{M2} =4 π A- (4 π A+ Φ_{M1})= Φ_{M1} = Φ_{1} 显然,与q和M的相对位置关系无关。

即可计算出的Klein瓶的通量唯一。

4.粘合法与投影法比较(Mobius面)

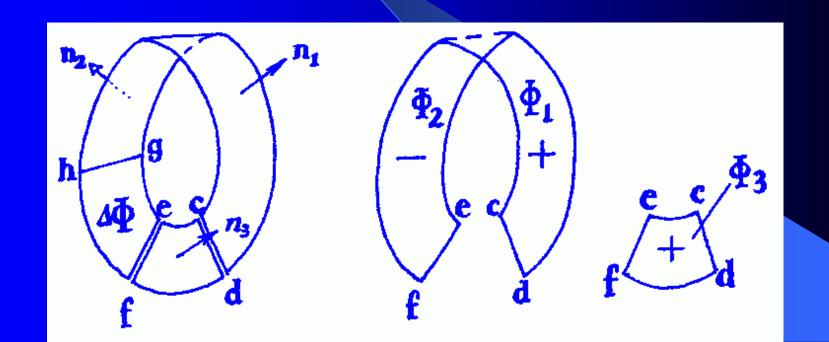
将A剪成两部分,显然二者皆为双侧曲面。 按法向量定义的通量计算方法:

如图 $\Sigma\Phi = |\Phi_1| - |\Phi_2| + |\Phi_3|$.



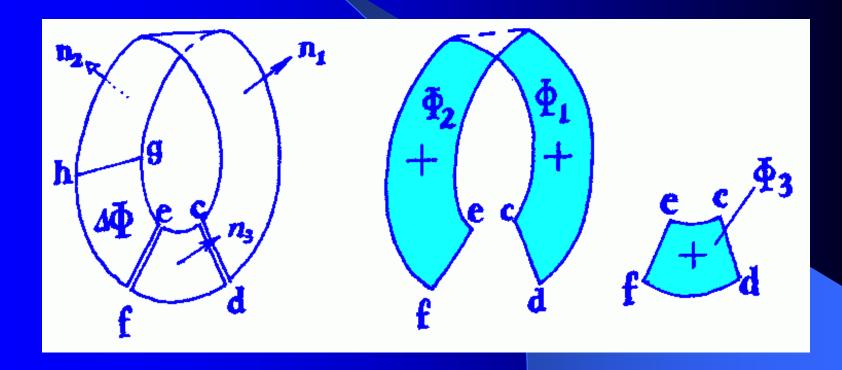
由剪的方式不唯一,当cdef变为cdhg时: $|\Phi_3'| = |\Phi_3| + |\Delta\Phi|$; $|\Phi_2'| = |\Phi_2| - |\Delta\Phi|$; 故 $\Sigma\Phi' = \Sigma\Phi + 2|\Delta\Phi|$.

即其通量无意义。



但如用投影法所得区域:

 $\Sigma \Phi_{y} = |\Phi_{1}| + |\Phi_{2}| + |\Phi_{3}|,$ $\Sigma \Phi_{y}' = |\Phi_{1}| + (|\Phi_{2}| - |\Delta\Phi|)$ $+ (|\Phi_{3}| + |\Delta\Phi|) = \Sigma \Phi_{y}$ 给出了相同的值。



结论

可见,由于定义不同,粘合法应用在单侧曲面法向量时是自相矛盾(多值)的,但投影法给出相同的值。

其根本原因在于投影法只有正值情况。不难证明,高斯定理对两种通量定义方法皆正确:对投影法,O在封闭面 S_0 内则 S_1 = 4π , Φ_y = $4\pi A$; 当O在封闭面外S0的投影为无面积的封闭曲线, S_0 =0, Φ_y =0.

但在处理非封闭曲面时, **Φ**, **Φ**_y给出不同的值。

这就是我对高斯通量计算的扩充和新理解.

谢 谢!